
2018 Feb. 2018 Feb.

目錄

2 Global Terahertz / Microwave Events Calendar 2018

About Technology

3 太赫茲成像方式簡介

Introduction of Members

11 會員介紹昇頻

Activities

- 13 太赫茲發展現況與應用趨勢論壇花絮
- 14 OPTIC 2017光電科技研討會花絮

出版者:亞洲太赫茲產業發展協會(ATIDA)

發 行 人:饒達仁 執行編輯:湯凱元

址:新竹縣竹北市台元街28號2樓之1

話: 03-5525633 真: 03-6561379

郵: ATIDA@acebiotek.com

址: http://www.acesolution.com.tw/tw/company/company_ATIDA.html

Global Terahertz / Microwave Events Calendar 2018

Title	Website	Dates in 2018
SPIE Photonics West	https://spie.org	27 Jan 1 Feb.
(San Francisco, California, United States)	https://spic.org	27 Jan 1 Feb.
8th International Workshop on Terahertz Technology and Applications	https://www.vdi.de/index.php?id=47465	20 - 21 Mar.
(Kaiserslautern, Germany)		
2018 29th IEEE International Symposium on Space THz Technology (ISSTT)	https://www.isstt2018.com/	26 - 28 Mar.
(Pasadena, California, USA)		
SPIE Defense + Commercial Sensing	https://spie.org	15 - 19 Apr.
(Orlando, Florida, United States)		*
China International Microwave and Antenna Exhibition IME2018	http://www.imwexpo.com/	17 - 19 Apr.
(Beijing, China)		
Security Canada East	www.securitycanadaexpo.com/	25 Apr.
(Laval, Canada) Security Canada Ottawa		
(Ottawa, Canada)	www.securitycanadaexpo.com/	9 May
10th Terahertz Days		
(Europe)		Jun. (TBA)
International Microwave Symposium IMS 2018		
(Philadelphia, PA, USA)	https://ims2018.org/	10 - 15 Jun.
2018 First International Workshop on Mobile Terahertz Systems (IWMTS)	1	2 4 7 1
(Velen, Germany)	http://www.iwmts.org/	2 - 4 Jul.
2018 IEEE SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY,	http://www.emc2018usa.emcss.org/	30 Jul 3 Aug.
SIGNAL & POWER INTEGRITY		
(Long Beach, California)		
IRMMW-THz 2018	http://www.irmmw-thz2018.org/	9 - 14 Sep.
(Nagoya, Japan)	http://www.iiiiiiiw-tiiz2018.0ig/	9 - 14 бер.
SPIE Security + Defence	https://spie.org	10 - 13 Sep.
(Berlin, Germany)	intpo.//opio.org	10 13 бер.
European Microwave Week	http://www.eumweek.com/	23 - 28 Sep.
(Madrid, Spain)		
SPIE Photonics Asia	https://spie.org	11 - 13 Oct.
(Beijing, China)	- ^ -	
China International Microwave and Antenna Exhibition IME2018	http://www.imwexpo.com/	24 - 26 Oct.
(Shanghai, China)		
40th Annual Meeting and Symposium of the Antenna Measurement Techniques Association	https://amta2018.org/	4 0 Nov
Association (Williamsburg, Virginia)	11ups.//aiiita2010.01g/	4 - 9 Nov.
Asia Pacific Microwave Conference		
(Kyoto, Japan)	http://www.apmc2018.org/	6 - 9 Nov.

■ 筑波科技 湯凱元協理

太赫茲訊號因為具有非侵入式、非破壞性以及無離子化的特性,並且可藉對 於不同材質有不同頻譜呈現的特性來區別成份,所以以太赫茲技術為基礎的影像 成像,是一個非常熱門的研究領域,並且可以拿來開發各種前所未有的應用,例 如:

- 安檢成像,在遠距離之下偵測隱藏武器或危險物品,不限定是金屬材質
- 非侵入式醫學檢測與牙齒結構判斷
- 檢測材質內部是否有破損或缺陷,例如:太陽能面板、木材、塑膠等
- ●非破壞性檢測IC封裝
- 藥錠內容物之成份分析
- 非接觸式檢測珍貴繪畫,手稿和文物
- 監測農作物和植物水分含量
- 檢測食品有無異物,如穀物當中的蟲卵

在了解成像方式以前,我們要了解太赫茲的系統,上一期季刊有提到太赫茲 訊號源以及偵測器的原理,而系統就是這二者組合,另外再加上必要的光、機結 構以及控制軟體。無論是訊號源或偵測器,都可能是利用雷射作光電轉換至太赫 茲頻段,也可以利用純電子的方式來實現,全世界每年都有無數的論文探討新的 技術,市面上也已經有不少產品發表,無論是哪一種型式,我們都要關注系統可 操作的頻率範圍、工作溫度及訊噪比(S/N ratio),另外訊號源還要關注發射功率 大小,而偵測器則是要留意接收靈敏度,產品的價差也會因為這些參數而有很大 的差別,所以要依照應用的需求來適當選擇。

接著說明幾種太赫茲系統的成像方式。

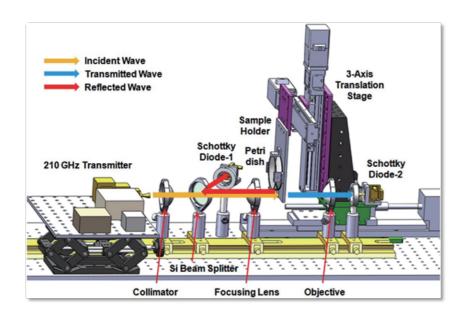


圖1. 可二維移動的平移台 (Foreign-body detection in dry food using continuous sub-terahertz wave imaging; Gyeongsik Ok, Hyun Jung Kim, Hyang Sook Chun, Sung-Wook Choi; 2014)

方式一:

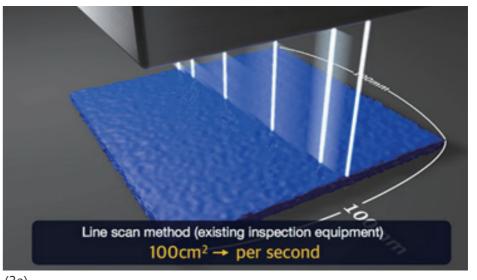

太赫茲影像的產生與偵測器的結構息息相關,一般太赫茲偵測器是測來自單一方向的 訊號·所以我們就稱之為單畫素偵測器(Single pixel detector),當然單畫素是無法成像 的,通常最簡單的解決方法是搭配-個可二維移動的平移台(圖1),透過機械式的平移台雖 然可以成像,但因平移的時間較長而增加成像時間,且可以平移的間距無法太小而影響影 像解析度。

圖1的架構是改變待測物的位置,另外也可以改變偵測器的位置(圖2)

方式二:

有時在不同應用場合需加快測試速度,例如工廠端,這時就可以搭配輸送帶作某一方 向的傳送,另一個維度以反射方式線性掃描,穿透待測物與輸送帶後,經拋物面鏡聚焦在 單點偵測器,最後搭配影像軟體合成成像,記得輸送帶材質在太赫茲頻段的衰減愈小愈 好。

(3a)

圖3. (a) 搭配輸送帶 (b) 特殊多邊型反射鏡作一維線性掃描 "High-performance sub-terahertz transmission imaging system for food inspection; Gyeongsik Ok Kisang Park Hyang Sook Chun, Hyun-Joo Chang, 1 Nari Lee and Sung-Wook Choi; 2015"

方式三:

速度永遠是以機械方式成像的缺點,如何避免機械掃描一直是研究人員的目 標,因此有研究單位想到在單點偵測環境中,先確認待測品是覆蓋在整個太赫 茲行進方向,這時在訊號傳輸路徑上外加上一所謂空間光調製器(Spatial Light Modulator; SLM)的裝置,以特定及數個圖樣(pattern)調製太赫茲電磁波,並藉 軟體演算還原影像。

基本上SLM是純電子式控制,所以可用非常快速的方式改變不同的圖樣,系 統分析軟體會將不同圖樣及對應的偵測器讀值整合分析,最終還原得到待測品的 影像。另外為了加速分析結果,我們希望以少許的讀值就可還原影像,這個概念 可藉由所謂壓縮感知(Compress-Sensing)演算法來實現。

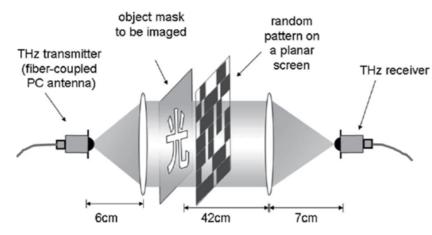
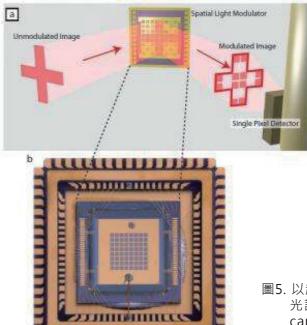
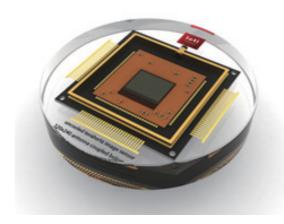
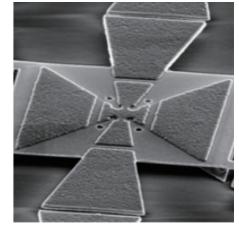


圖4. A single-pixel terahertz imaging system based on compressed sensing; Wai Lam Chan,a Kriti Charan, Dharmpal Takhar, Kevin F. Kelly, Richard G. Baraniuk, and Daniel M. Mittleman; 2008

目前已經有研究人員以超材料(metamaterial)實現在太赫茲環境中使用的SLM (圖5)· 另外新竹清華大學也有實現以液晶所做出之SLM裝置。


圖5. 以超材料(metamaterial)所設計之空間 光調製器; Single-pixel 'multiplex' captures elusive terahertz images; 2014

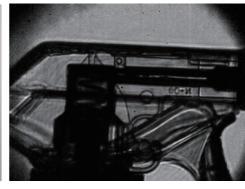
方式四:

就整個光譜而言,目前光學成像技術在太赫茲頻段以外是非常發達的,例如我們隨手 可得的相機,動輒千萬畫素以上,即使較低頻的紅外線熱影像,也是輕易到達百萬畫素, 然而在太赫茲頻段要達到高畫素仍是非常困難。

近年來研究單位已經努力基於類似紅外線熱影像儀,往相對更低頻率的太赫茲頻段, 以偵測熱的原理,製造高畫素的微測輻射(microbolometer)陣列(圖6)。

(a) (b)

圖6. (a)由法國CEA LETII研究機構利用微測輻射計陣列所設計,達320 x 240 畫素之太赫茲



目前已經有廠商整合這樣的技術·設計成如一般CCD攝影機產品(圖7)·只要搭配適當的太赫茲訊號源後·就可以即時清楚呈現穿透物質後的影像(圖8)。

圖7. 法國i2S之太赫茲320 x 240畫素 攝影機TZcam

(a) (b

圖8. (a)可見光之下物體外觀 (b)以i2S TZcam在2.5 THz之下所得到的影像

方式五:

雖然以微測輻射計技術所得到的太赫茲影像非常清晰,但是操作頻段無法太低,一般至少在0.5 THz以上,所需的太赫茲訊號源價位通常較高,因此不適合系統成本是關鍵因素的應用場合。一種利用半導體製造技術,由偵測表面電漿與太赫茲訊號作用下的能量變化(圖9),就適合在0.1~0.7 THz之下操作。

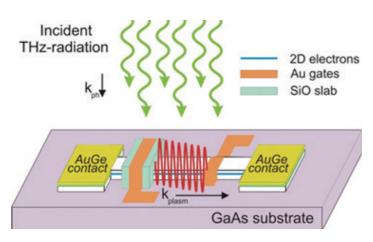


圖9. 導體間的表面電漿與太赫茲訊號相互作用

將每一個這樣的偵測單元當作一個畫素,以陣列的方式組合起來後,就可以在太赫茲 低頻段即時作成像(圖10),這樣組合起來的系統價位低於以微測輻射計為技術基礎的系統,所以可應用的範圍也會較廣,目前技術上要克服的是畫素量仍無法像微測輻射計系統高。



圖10. (a) TeraSense 的64 x 64 畫素之太赫茲相機 (b) TeraSense 的256 x 4 畫素之太赫茲相機

實際應用可搭配輸送帶(圖11),可在產線或安檢單位執行高速檢驗。

圖11. TeraSense line camera搭配輸送帶執行高速檢驗

方式六:

利用短脈衝飛秒雷射光激發光導開關的太赫茲系統,透過發射與接收端的同 步機制與脈衝訊號,不僅可以精準得到電場向量參數,也能得知待測物內不同介 質的折射係數與厚度(圖12),利用如圖2之二維掃描裝置與系統軟體的搭配,甚至 可以獲得待測物的三維成像,這些是上述其他只能偵測能量(非向量)的系統所無 法實現的。

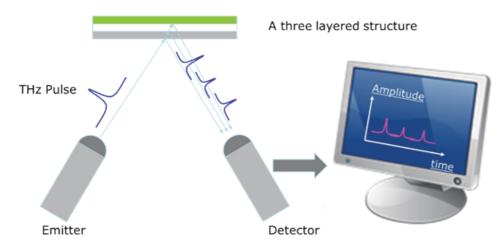


圖12. 利用太赫茲短脈衝訊號,可獲得待測物內部材質及厚度資訊

有了這些功能,可以進行如古畫等珍貴藝術品非接觸式檢測與修復(圖13)、 汽車烤漆厚度檢測(圖14),甚至可用於醫療檢測上,如藥品毒物分析、骨科、牙 齒檢測,或皮膚病變(圖15)等。

圖13. 以TPS4000系統執行古壁畫檢測

圖14. Teraview烤漆厚度檢測

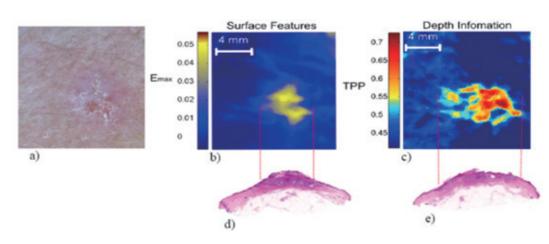


圖15. (a)可見光之下的皮膚外觀 (b)靠近皮膚表面以太赫茲技術看出病變組織區域 (c) 皮膚深處以太赫茲技術看出病變組織區域 (d)皮膚表面實際病變組織 (e) 皮膚深處實際 病變組織

太赫茲技術在過去二十年當中已經有很大的成長,愈來愈多產品逐漸由實驗室出來進 入市場,藉由太赫茲訊號的獨特性,我們可以開創非常多以往未曾想過的影像應用,雖然 目前仍存在設備昂貴的問題,但整體的趨勢就是往縮小化、高靈敏度發展,甚至希望可以 手持式操作。未來隨著應用的多樣化,相信更可加速太赫茲技術普及,值得此刻我們繼續 努力研發與投資。

會員介紹

昇頻股份有限公司

堅強圍隊 永續經營

昇頻股份有限公司(Proscend Communications Inc.) 成立於1999 年正式進駐 新竹科學工業園區,乃為寬頻網路設備、方案和服 務之國際領導廠商,具備ISO-9001及 IOC080000 認證,主要大股東為獲得台灣國際品牌前十名之績 優上市公司-正新集團,及資通訊產業之傑出領導 廠商-筑波集團。昇頻本著以「持續創新、追求卓 越、客戶滿意」為核心理念,致力於研發有線及 行動無線之工業規格等級寬頻網路傳輸產品,提 供全球高品質及高效能之工業級網路產品及最佳 化整合解決服務方案為職志。其中 SHDSL 產品線 很榮幸在全球通訊業界頗具知名度: 並目其印度子 公司 (Proscend Communications India Private Limited)服務當地有名電信公司Airtel 等客戶,領先 其他國際競爭對手為 SHDSL 最大供貨廠商。昇頻工 規產品也應用於德國電廠、法國地鐵、日本國鐵等 先進國家重要設施上,品質深受客戶所肯定信賴。

厚植根基 深耕國際

昇頻的核心團隊擁有至少25年以上產業經驗·並且曾任職於頂尖之網通科技大廠·豐富的經營銷售管理及精進的研發專業能力·於高科技產業界皆有傑出的績效表現。昇頻以台灣為根基·以拓展國

圖1. 昇頻商規與工規寬頻網路傳輸產品及設備

際市場為目標,放眼全球市場版圖,橫跨了歐洲、 美洲及亞洲區域,行銷據點遍及至美國、法國、德 國、義大利、瑞士、芬蘭、俄羅斯、烏克蘭、日 本、印度、中國、泰國、臺灣、印尼、菲律賓、中 南美洲及中東地區等三十幾個國家以上,在寬頻有 線和行動無線設備的市場上與國內、外等具指標性 跨國際電信公司及資通訊品牌大廠建立策略合作關 係,供應及設計工業規格等級之寬頻網路傳輸產品 及設備。

創新研發 強化利基

創立之初,昇頻專注於發展高速數位傳輸設備 SHDSL, 從事軟體非對稱數位用戶迴路軟體數據機 (Asymmetric Digital Subscriber Line Software Modem; Software ADSL)和超高速數位用戶 迴路系統 (Very High bit rate Digital Subscriber Line; VDSL System)等新一代通訊環境下所需 相關產品之研發製造和行銷。研發成果及產品技術 逐年屢獲了科學園區高科技創新計畫獎助案,肯定 昇頻公司軟硬體產品技術之創新整合能力。昇頻亦 取得xDSL之關鍵核心技術研究與設備之研發與銷 售,其中「Optimal Discrete Loading Algorithm For DMT Modulation」獲得美國專利,產品涵蓋 IDSL、ADSL、VDSL、SHDSL、及第二代對稱式數 位用戶迴路企業用路由設備 (SHDSL.bis Enterprise WAN Router)等週邊設備前後共約四十個機種,其 中 VDSL SFP 及 Long Reach PoE 系列皆為國際上 僅有少數廠商可提供之高階機種,足以提供市場網 際網路應用於影像、動畫、語音內容所需各種高頻 寬存取技術之需求,昇頻已成為國內、外相關廠商 與客戶樂於長期合作且信賴之重要夥伴,在寬頻網 路產業國際市場上取得一席之地。

不斷精進 創造價值

昇頻於近幾年積極開發VDSL 2 專線設備、廣域網路之路由器 (EFM ROUTER)、電信級網路設備

(VDSL2 IP DSLAM)、及 Long Reach PoE等高科技 通訊產品 · 提供使用者高附加價值之產品與服務。同時 · 規劃一系列銅線傳輸設備 (DSL 、Copper SFP Modem) 、光介面通訊設備、及因應工業4.0及 物聯網之產業發展及市場需求 · 開發工規行動無線 路由器 (Industrial Cellular Router) 等產品線 · 並通過最嚴苛之工規標準 HALT、防震等測試安全品質認證。因應物聯網之產業大趨勢亦推出IoT 之網路行銷品牌 · 並取得國際自有品牌O'smart專利註冊 · 各產品線已陸續地推動及分階段上市。昇頻不斷地突破競爭創造優勢 · 提供最佳化且優質的產品與服務 · 解決客戶問題 · 滿足客戶需求 · 竭力地追求創造最大的雙贏價值。

軟硬整合 開拓契機

昇頻除了持續地深耕寬頻網路傳輸產品及設備, 亦積極籌劃佈局關鍵產品與服務解決方案。展望未 來朝向跨平台及跨產業之虛實軟硬整合智能化時 代,從2G、3G、4G一路擴張,到了5G及工業物聯 網(IIoT)的時代,帶動自動智能工廠、智慧城市等 各種多元智慧化的應用百花齊放,在機器與設備的 連結過程中,不僅僅需要寬頻、網通產品裝置等, 串連各種設備之間的網通解決方案和服務,將成為產業變革轉型的關鍵元素。昇頻除強化既有研發生產之能力,依據變革轉型方向連結相關的合作夥伴予以整合技術與產品,協同策略合作,共創群聚效應,提供關鍵任務產品、解決方案和服務(Missioncritical products, solutions, and services),建立更臻完備之產業供應與行銷規模,期能成為工業規格等級網通智能連接的專家和領導廠商(Industrial Connectivity Expert and Leader)。

前瞻展望 迎太赫兹

太赫茲波應用的領域廣泛,例如:超高速無線網路傳輸、細微化學物質偵測、遠端透視影像偵測、生醫科技影像、防恐安控檢查等。太赫茲波段的研究為當代前瞻關鍵之重要研究技術項目之一,昇頻公司很榮幸能加入「亞洲太赫茲產業發展協會」成為永久會員,確保在關鍵前瞻通訊技術研究上保持與業界同步,我們相信在此協會之共同平台上,大家可以取得最新之科技新知、發展資訊、與產業訊息,結合國際上產、學、研專家與單位之投入,在未來創造所在組織及個人豐盛之收穫。

圖2. 昇頻0'smart自有品牌及loT產品使用示意圖

太赫茲發展現況與應用趨勢論壇

感謝會員們的支持,我們在2017年11月24日所舉辦第一次「太赫茲發展現況與應用趨勢論壇」研討會已順利圓滿完成,現場與會者來自產、學、醫等各技術專業領域人員,超過50位以上,顯見大家關心及投入太赫茲技術,日後我們也計畫陸續安排相關研討活動,讓我們為太赫茲在台灣的深根與茁壯更添加信心。

整個活動在理事長饒達仁以及發起人許深福董事 長主持下展開,在致詞中也提到,以太赫茲技術為 基礎所衍伸的應用,已經愈來愈融入我們的生活周 遭,期待藉由ATIDA的平台,讓各樣領域與產業,

例如半導體、通訊·材料、醫學等等·都有機會互相交流激盪,趕上其他國家的研發腳步。

會中我們也尤其感謝擔任主講的嘉賓:

筑波科技李菁君協理

英國劍橋 TeraView公司 Philip Taday 博士

清華大學王威智教授

新英格蘭診所院長黃柏榮醫師

臺大醫院葉大偉主任

各個嘉賓在整個研討會過程,無論是太赫茲研究 或技術期待,都有非常精闢的演說,藉由他們精彩 生動的分享,也讓學員收穫滿滿,我們特別摘要如下:

太赫茲大陸發展現況與發展趨勢李菁君協理/筑波科技

李協理因為工作上的關係,長年在大陸地區,並且服務使用太赫茲技術的客戶。在與客戶往來過程中,深深體會整個中國大陸是以國家的力量在扶植太赫茲產業,例如目前進行中的「十三五計畫」,就將太赫茲列為重點研發項目,應用於基礎科學、安檢、通訊、氣象、遙測、軍事等,現在更致力於太赫茲元件的開發,十年來不斷招攬國外與台灣人才,以半導體技術研發高功率訊號源或偵測器,面對對岸如此積極的態度,李協理特別勉勵與會專家也要更加投入相關研發。

Uses of terahertz waves in the industry Dr. Philip Taday/ TeraView

Dr. Philip本身是化學與光學專家·在太赫茲領域的研究超過20年·也就是當太赫茲技術還停留在實驗室開發階段時·就已經作了很多研究·所以當其服務的TeraView公司推出太赫茲商用設備時·非常清楚一般研發人員的需要,以及如何以現成系統穩定及完整的功能·完成過往需要長時間設定與調整才可以作到的測試·甚至可以直接導入工業生產應用·例如在會中提到以非破壞及非接觸方式·完成汽車鈑金烤漆厚度量測·另外Dr. Philip

也在報告中詳述太赫茲時域頻譜儀(Time-Domain Spectroscopy)的原理·讓學員清楚認識系統架構。

THz application: Tunable metamaterial THz bandpass filter 王威智 教授/清華大學

超材料是由周期性金屬結構、以半導體或微機電製程所製作出之人造材料,其精密幾何結構及尺寸大小,小於所要應用之電磁波波長,也因為這樣的結構,產生負折射率性質以及超高折射率,這兩者在本質上通常是不可實現的。王威智教授長年研究超材料,在這次報告中,王教授特別針對他在太赫茲頻段的研究成果,包括材料結構、實驗結果,並且是可利用電氣主動控制的,證明台灣確實已經擁有發展太赫茲元件能力,期待更多會員共同往超材料技術精進。

The development of early breast cancer screening from the points of breast health center

黃柏榮助理教授/北醫醫科院乳房外 科主任醫師/新北聯合醫院

太赫茲因非侵入式、非破壞性以及無離子化的特性,已經是各國在醫學領域爭相研究的技術,黃醫

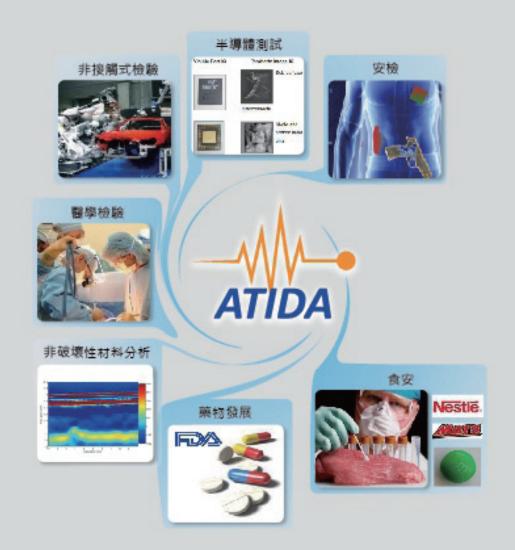
師的乳癌治療在台灣與大陸二岸,有非常多年經驗豐富的研究,深知乳癌對於婦女同胞有極大的殺傷力,會中黃醫師除了詳述乳癌診斷與治療的方式,也希望有更新的技術可以協助醫師診斷判斷,因為太赫茲訊號有穿透的效果,有機會快速呈現正常與病變組織的margin,英國TeraView公司在這方面已經有很多實務經驗,但因乳癌細胞也會存在深層部位,並非只有表層,所以如果結合現有放射科技術,在不同的波段發揮不同功能,將來對於醫師在臨床治療過程有很大的幫助。

Q&A (太赫茲技術如何應用於醫療產業) 葉大偉 醫師/臺大醫院

葉醫師目前在臺大新竹分院擔任耳鼻喉科主任,在多年的行醫過程中,也不斷在思考是否有更新的技術可以來協助醫療診斷,葉醫師在會中表示,耳鼻喉相關疾病大多屬於皮膚或口腔表層之處,太赫茲因非侵入式、非破壞性的特性,並且可以穿透皮膚表層,是非常適合做耳鼻喉方面的醫學應用,因為目前相關的醫學檢查幾乎都是侵入式的。太赫茲在醫學應用目前剛起步,我們可以先挑一個接近的醫學儀器,配合台灣目前在一般軟硬體的強項,逐漸打造出新的設備,期待更多學者、廠商加緊努力,整合現有醫療技術,提升台灣醫學實力。

OPTIC 2017 光電科技研討會

協會參與本次由中山大學主辦之OPTIC 2017 光電科技研討會,參加者不乏國內外知名學者。 此次攤位展示TeraSense機台外,也展示了許多 DM與海報。藉由TeraSense的實機操作與海報說 明,讓更多人了解什麼是太赫茲、其作用原理與 其應用面。



13 ATIDA

Asia Terahertz Industry Development Association

