· Z LITEPOINT

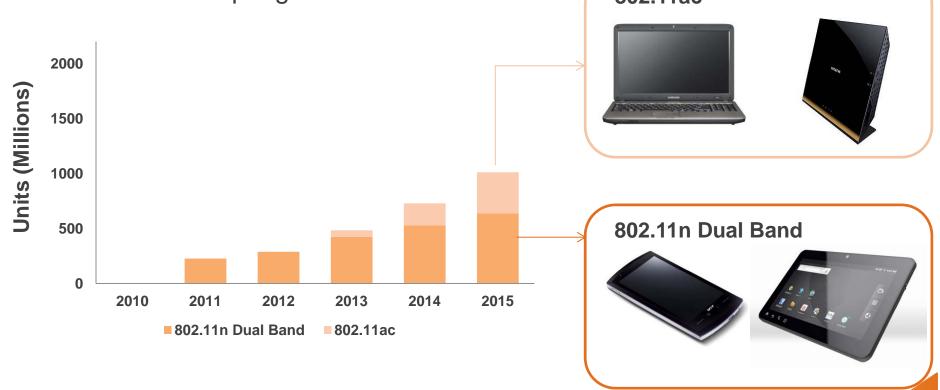
Smarter WLAN Testing Strategy

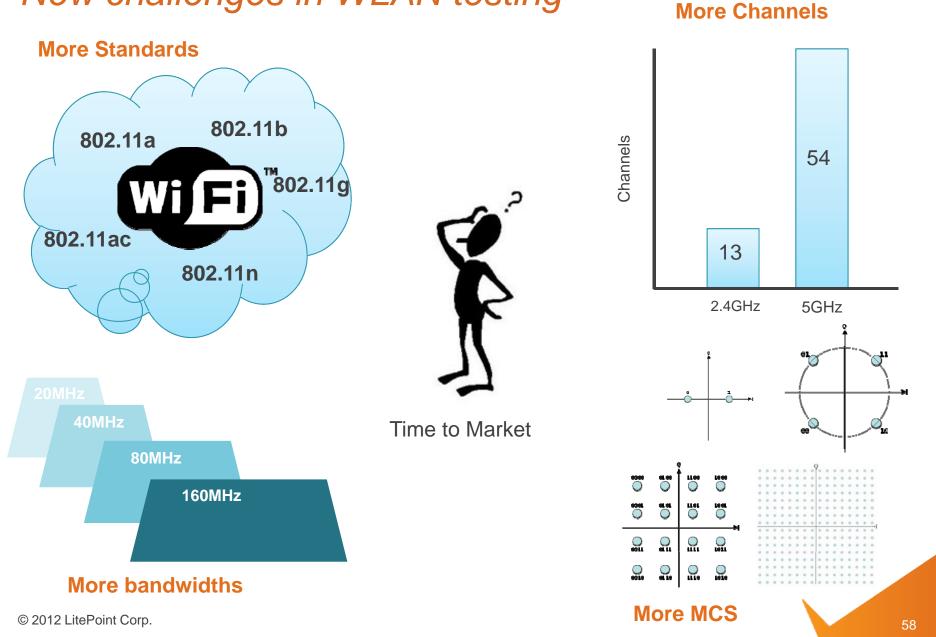
Bluet

. CPS

November 2012

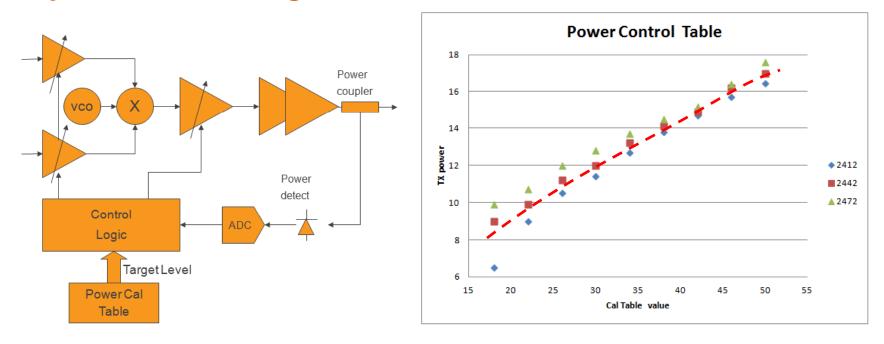
© 2012 LitePoint, A Teradyne Company. All rights reserved.


Outline


- Introduction
- Traditional Test Approach (Why)
- 5GHz is it the same
- What does 802.11ac Change
- A different Test Approach
- Summary

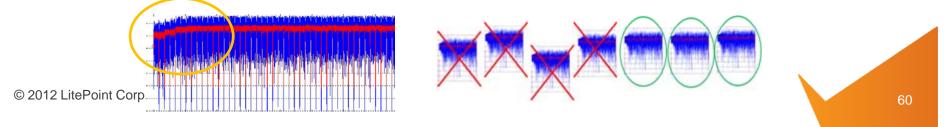
WLAN market trends

Adoption of dual-band WiFi (2.4-GHz/5-GHz) is strong 2.4GHz is too crowded – 5GHz has many more channels Access points with simultaneous dual band Mobile device adopting dual band

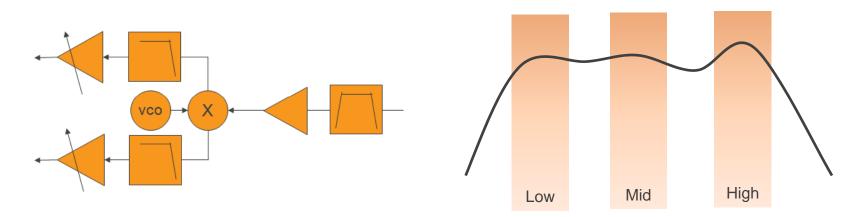

New challenges in WLAN testing

Traditional Test Approach

- Test performed at Low, Mid, High frequency of a frequency band
- Transmit performed at the test frequencies usually include:
 - EVM at the highest data rate
 - 11b 11M, 11g 54M, 11n MCS7
 - Transmit Power
 - Mask measurement for 11b and possibly for OFDM
- Receive performed at the same 3 frequencies
 - PER test for highest data rate 54M and/or MSC7, 11M
 - PER at the lowest input level 6M or 1M
 - Some people add PER test at maximum input for 11M and 54M/MSC7



Why Low, Mid, High? – Transmitter



• One or more tables over given frequency range

- One shared curve
- Interpolation between multiple curves/points

Why Low, Mid, High? - Receiver

• Noise Figure

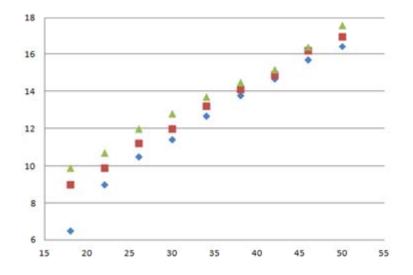
Thermal noise (BB filter BW) + NF + SNR (Eb/No) for given PER = Sensitivity Frontend loss adds directly to noise figure

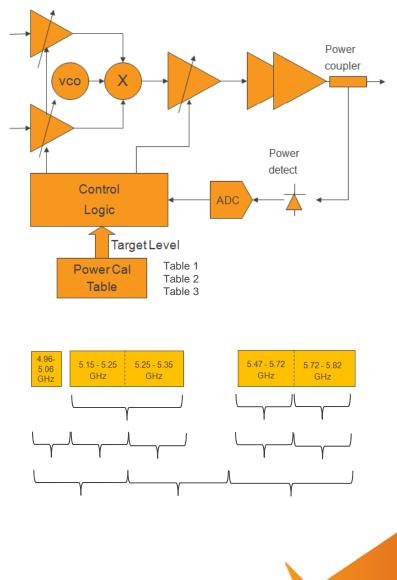
• RF Filter normally shows ripple close to ends (low/high)

additta

5GHz Changes the Picture

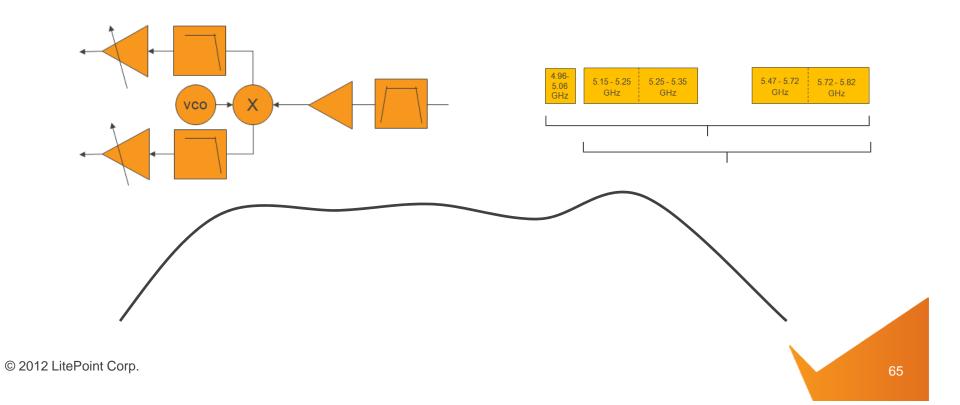
5GHz is Different




0112	5.47 - 5.72 GHz	5.72 - 5.82 GHz
------	--------------------	--------------------

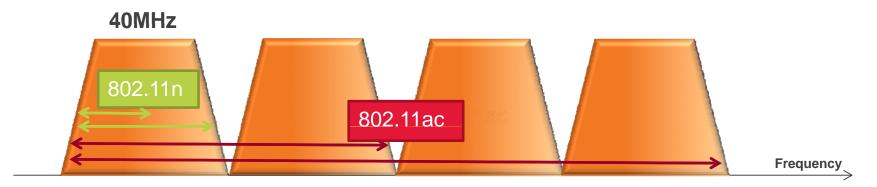
- Dual Band devices add many more channels
 - Less interference
- RF performance is more difficult @ 5GHz
 - Higher frequency
 - More phase noise
 - Much wider frequency range
- 802.11n HT20 and HT40
- 802.11ac
- No 802.11b

5GHz TX Operation

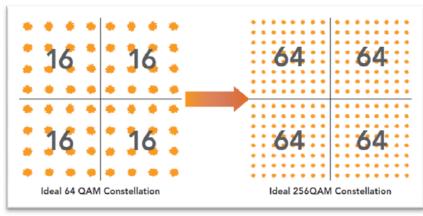

- 5GHz band separated into sub bands
 - Multiple Cal Tables used
 - RF performance drives the cal tables
- Basic idea remains the same

5GHz RX Operation

- Receive is typically not separated into sub bands
 - No Calibration so no need for sub-bands
 - RSSI typically not calibrated



802.11ac is 5GHz only



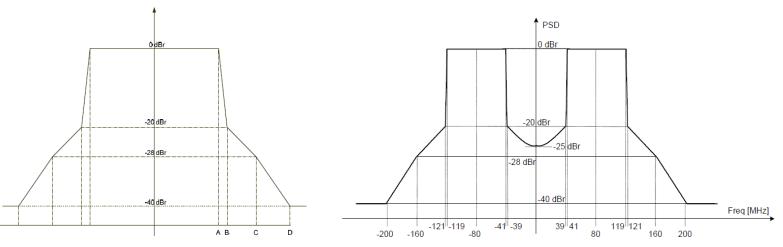
802.11ac PHY Layer Key Changes

■80/160 MHz bandwidth channel

256QAM has 4X more symbols than 802.11n highest rate, driving tester SNR demands

Modulation and Coding Scheme (MCS)

- 802.11ac mandatory supports all the 802.11n modulation schemes
 - BPSK,QPSK,16QAM/64QAM
 - Adds optional 256QAM
 - 256QAM modulation scheme as tighter EVM requirement


Modulation	Coding rate	Relative constellation error (dB)
BPSK	1/2	-5
QPSK	1/2	-10
QPSK	3/4	-13
16-QAM	1/2	-16
16-QAM	3/4	-19
64-QAM	2/3	-22
64-QAM	3/4	-25
64-QAM	5/6	-28
256-QAM	3/4	-30
256-QAM	5/6	-32

802.11ac Worldwide

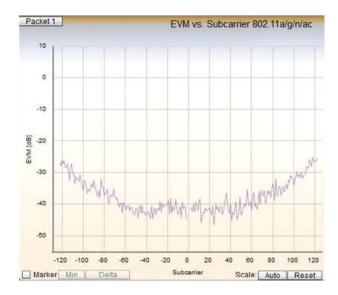
802.11 ac Mask Measurements

- Mask requirement in 5G band has changed recently (802.11 2012 release)
- Now masks are defined to -40dBr in 5G (Used to be -45dBr)
 - HT80 is worst case for 11ac spec
 - HT40 is tighter according to old spec
- 2.4GHz remains the original -45dBr

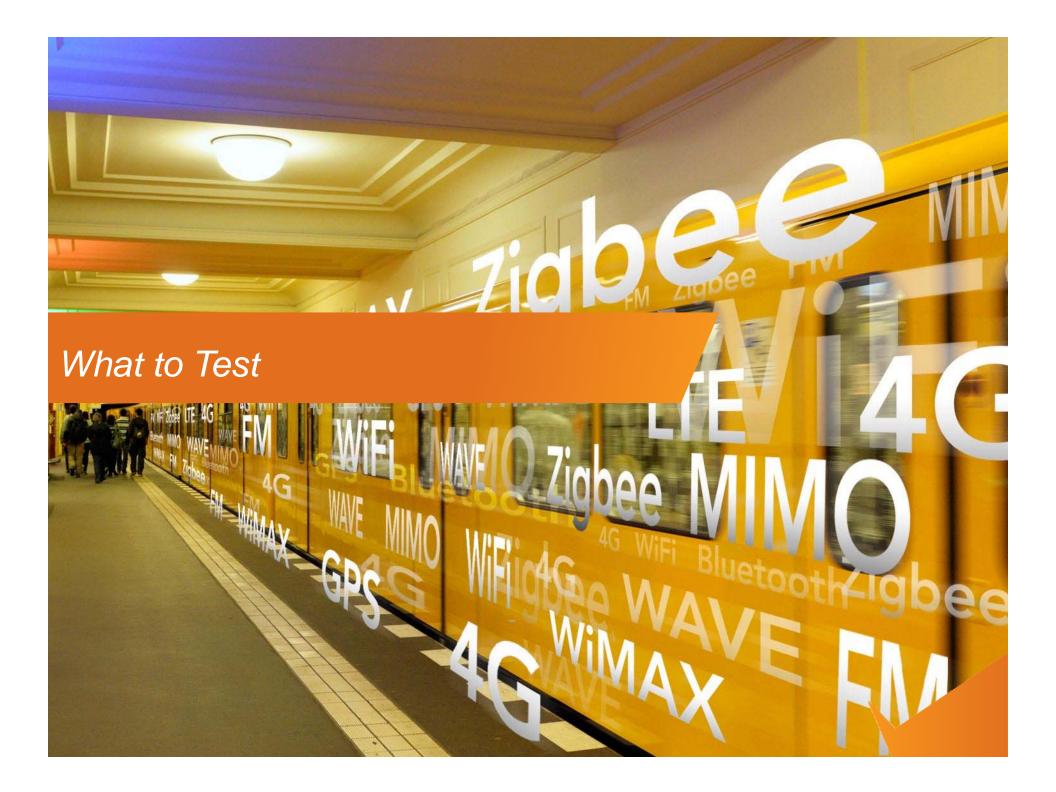
Channel Size	Α	В	С	D
20 MHz	9 MHz	11 MHz	20 MHz	30 MHz
40 MHz	19 MHz	21 MHz	40 MHz	60 MHz
80 MHz	39 MHz	41 MHz	80 MHz	120 MHz
160 MHz	79 MHz	81 MHz	160 MHz	240 MHz

Transmitter Quality

- IQ mismatch & group delay variations
 - BB Filter group delay
 - IQ mismatch accuracy over wide BW
- Phase noise

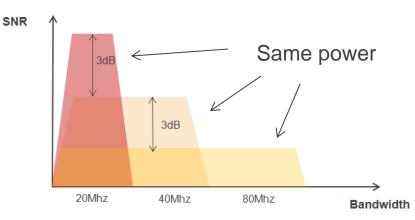

Phase noise of synthesizer:

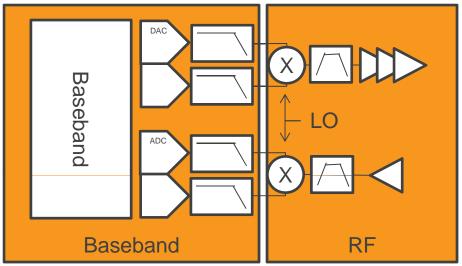
Phase noise $\approx \frac{\text{Channel Frequency}}{\text{Reference Frequency}}$


Worst at highest channels

EVM requirement for QAM256 restricts phase noise

- Compression
 - Much tighter EVM
- Insufficient SNR adds noise to constellation

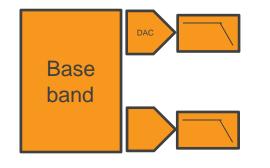


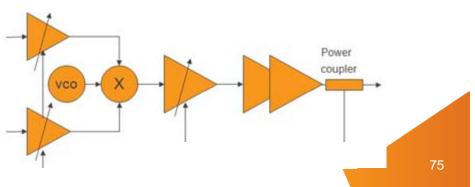

What to Test

- HT20 vs. HT40 vs. HT80 (vs. HT160)
- Transmitting HT80 effectively has 6dB more stringent TX SNR requirement than HT20
 - Same power is transmitted over larger BW Less power per carrier/MHz
 - Effects Mask and EVM
 - Typically other factors limit performance
- RX specification compensates for BW
 - RX is relaxed 3dB and 6dB for HT40/HT80

Understanding the Chip

- Two functional blocks
 - Baseband
 - RF
- Baseband performs modulation and demodulation
 - Does not matter what frequency is used
- RF up-convert/down-convert the wireless signal
 - Does not matter what modulation is used


What to Test - Transmitter

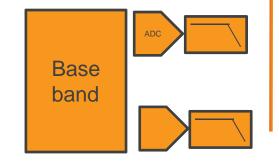

Baseband

- Modulation
 - Different data rates
 - Fundamental rates
- Anti Alias Filter for different HT
 - Mask
 - Flatness (PA pre distortion)
 - Assume filter changes with TX BW

RF

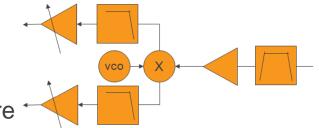
- Power accuracy
 - Calibration tables
 - Low, Mid, High
- EVM
 - IQ mismatch
 - Phase noise
 - Compression
- MASK
 - Compression
 - Noise floor
- Transmit flatness

What to Test - Receiver

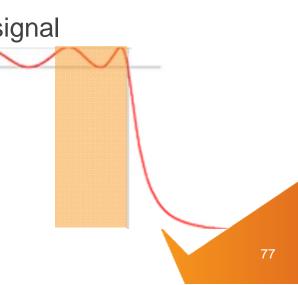

Baseband

- Modulation
 - Different data rates demodulation
- Baseband RX filter over BW
 - 20MHz BW
 - 40MHz BW
 - 80MHZ BW

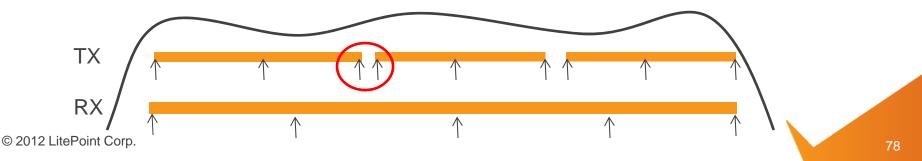
RF


- Receive performance
- Noise Figure
- RF performance flatness
 - RF ripple
 - Testing with wide BW can mask ripple
- RX distortion
 - Max input compression
 - Phase noise
 - IQ mismatch


vco


Narrow Band vs. Wide Band test

- RF test covers RF filter ripple
 - RF ripple changes noise figure
 - Testing with wide BW can mask a narrow BW failure



- Testing Wide BW baseband filter with narrow BW signal
 - 80MHz 11ac RX using 20MHz signal
 - Furthest from center
- TX test includes flatness so no need to narrow test

5GHz can be much more than 3x low, mid, high

- Understand TX calibration approach
 - Need to validate power at Low, Mid, High for each sub-band
 - With 3 sub-bands 9 measurement points exist
 - Measurements to verify baseband function can be included
 - Power will be the same if using LTS
 - EVM is transmit quality so same for lower data rates
 - Test different BW over the 9 points where possible (HT20, HT40, HT80)
 - No need to repeat BB measurements already verified in 2.4GHz
 - Choose the worst case test scenario for critical measurements Test phase noise via Max data rate at highest VCO frequency
- RX should **NOT** follow the TX points
 - High point of lower sub band is adjacent to next sub band low point
 - Spread the RX verification points over the full band

Other Considerations

3G

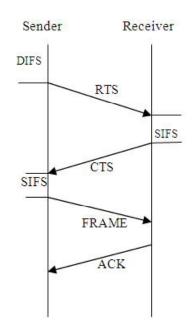
F٨

C 1.

ViF

Bluetooth

FM


MIN

4G

31

Looking beyond physical layer test

- In actual transactions a transmitted packet is acknowledged from the recipient – The ACK
- The ACK packet is small basically only containing the MAC addresses of transmitter and receiver
- To make link asymmetrical the lowest data rate fitting the packet data, thus 24M will be used to ACK a 54M packet
 - 24M and 54M ack will have same duration
 - The lower rate is chosen to ensure high probability of the ACK being received when the received packet is good
 - Once data rate is lower, ACK will move to 6M
- If ACK is not working the DUT is not working
 - even if 54M packet is good

Simultaneous 2.4G & 5G Operation

- Most modern High End APs support simultaneous dual band operation.
 - Ideally one should test this
- Receivers typically do not interfere
- Interference can occur if one channel is transmitting while the other is receiving
 - Transmitter wide band noise can enter the receiver
 - Noise from TX power supply current can couple to receiver
- Both TX simultaneous can effect quality from power supply
- No need to test differently (one band at a time)
 - Simply enable TX in the not tested band while testing in the other
 - When testing 5G one should test @ 2nd harmonic of 2.4G TX signal
- If 2.4G and 5G bands have separate RF connections (antenna connections) one can use fast switching
 - Testing both bands at the same time using the 2 RF ports of IQxel
 - Faster operation, but more complex to implement

Putting it all together

Example

Transmitter

2.4	GHz b	and	5GH	5GHz Low band		5GHz Mid band			5GHz High band		
11M EMP	1M EMP	54M EMP	24M EMP	MSC6 HT80 EMP	MCS0 HT40 EMP	MSC8 HT40 EMP	MCS7 HT40 EPM	MCS4 HT20 EP	6M EP	MSC2 HT40 EMP	MCS9 HT20 EMP
		QAM 64	QAM 16	QAM 64	BPSK	QAM 256	QAM 64	QAM 16	BPSK	QPSK	QAM 256
	ACK		ACK		ACK			ACK	ACK		
				HT80	HT40	HT40	HT40			HT40	HT20

Receiver

2.4 G	lz ban	d
11M	54M	1M
		ACK

5GHz band						
24M			6M	MSC7 HT40	MSC4 HT20 H	MSC9 HT20
ACK	QAM 256	QPSK	ACK BPSK	QAM 64	ACK	QAM 256
		ACK QAM	24M MSC8 HT80 HT20 L ACK QAM QPSK	24MMSC8 HT80MSC2 HT20 L6MMSC8HT20 LHT20 L6MACKQAMQPSKACK	24MMSC8 HT80MSC2 HT20 L6MMSC7 HT40ACKQAMQPSKACKQAM	24MMSC8 HT80MSC2 HT20 L6MMSC7 HT40MSC4 HT20 HACKQAMQPSKACKQAMACK

Summary

- Traditional low, mid, high test approach covers 2.4GHz well
 - Should add test for ACK operation
- 5GHz operation adds more required measurements
 - TX calibration tables should be verified
 - RX and TX do not need to be at same frequency
- Separate baseband and RF when designing test plan
 - Allows significant improvement in test coverage
 - TX follows cal tables
 - RX can be spread out over full band
 - Use different data rates to increase test coverage (baseband)
 - Use large BW for TX test (worst case SNR)
 - Use narrow BW when testing RX (wide can hide local issues)
- Simultaneous Dual Band devices should be tested with TX enabled
- Test planning is important for optimal test coverage and fast test time